BIFURCATION DYNAMICS OF THREE-DIMENSIONAL SYSTEMS

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcation Dynamics of Three-Dimensional Systems

Oscillations described by autonomous three-dimensional differential equations display multiple periodicities and chaos at critical parameter values. Regardless of the subsequent scenario the key instability is often an initial bifurcation from a single period oscillation to either its subharmonic of period two, or a symmetry breaking bifurcation. A generalized third-order nonlinear differential...

متن کامل

PERIODIC SOLUTIONS OF CERTAIN THREE DIMENSIONAL AUTONOMOUS SYSTEMS

There has been extensive work on the existence of periodic solutions for nonlinear second order autonomous differantial equations, but little work regarding the third order problems. The popular Poincare-Bendixon theorem applies well to the former but not the latter (see [2] and [3]). We give a necessary condition for the existence of periodic solutions for the third order autonomous system...

متن کامل

Bifurcation dynamics and avulsion duration in meandering rivers by one-dimensional and three-dimensional models

[1] At river bifurcations, water and sediment are divided over two branches. The dynamics of the bifurcation determine the long-term evolution (centuries) of the downstream branches, potentially leading to avulsion, but the dynamics are poorly understood. The long-term evolution can only be studied by one-dimensional models because of computational costs. For such models, a relation describing ...

متن کامل

Bifurcation Dynamics in Control Systems

This chapter deals with bifurcation dynamics in control systems, which are described by ordinary differential equations, partial differential equations and delayed differential equations. In particular, bifurcations related to double Hopf, combination of double zero and Hopf, and chaos are studied in detail. Center manifold theory and normal form theory are applied to simplify the analysis. Exp...

متن کامل

Chaotic dynamics of three - dimensional Hénon maps that originate from a homoclinic bifurcation

We study bifurcations of a three-dimensional diffeomorphism, g 0 , that has a quadratic homoclinic tangency to a saddle-focus fixed point with multipliers (λe iϕ , λe −iϕ , γ), where 0 < λ < 1 < |γ| and |λ 2 γ| = 1. We show that in a three-parameter family, g ε , of dif-feomorphisms close to g 0 , there exist infinitely many open regions near ε = 0 where the corresponding normal form of the fir...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Bifurcation and Chaos

سال: 2000

ISSN: 0218-1274,1793-6551

DOI: 10.1142/s0218127400001122